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Abstract. The arrival time at a point in the case of the one-dimensional motion of a 
classical particle is only predictable if initially the position and velocity are both known 
precisely. It is shown that such an arrival time can be defined in a probabilistic sense when 
only the initial means and standard deviations of position and velocity are known. The 
arrival time so defined depends on the subjective concept of confidence limit. It is further 
shown that arrival time in the latter sense goes over to quantum mechanics. A lower 
bound on the transit time is derived for this situation by use of the Mandelstam-Tamm 
inequality. 

1. Introduction 

The status of time in non-relativistic quantum mechanics has received extensive 
treatment, and no attempt will be made here to give even a partial review of the 
literature. Extensive discussion has taken place on delay time and the closely related 
topic of decay time, the treatment of time as an observable rather than as a parameter, 
and on the time-energy uncertainty principle. In this work we shall concentrate on a 
special and concrete situation, namely the arrival time at a point of a particle moving 
freely in one dimension. We shall discuss this concept both in the case when the 
particle is governed by the laws of classical mechanics, and also in the case when the 
particle is governed by the laws of quantum mechanics. 

It is well known that an approach to arrival time as an observable conjugate to 
energy involves mathematical difficulties. Such difficulties, and others, were considered 
by Allcock in a series of three papers (Allcock 1969a, b, c). In order to meet them, 
he took into account, in a quantum mechanical way, the effect both of the source and 
of the measuring apparatus. Arrival time at the point x = 0 was then interpreted in 
terms of the probability P ( t )  that at time t the particle should have arrived at, and 
been registered by, the apparatus, situated in the interval x 3 0. 

In his work Allcock has an apparatus present in the region x 3 0 throughout time. 
As he points out it can be visualised as a succession of ‘sweeps’ of the positive real 
axis, and can be modelled by an absorbtive potential -i V in the interval x 2 0. The 
‘watched pot’ problem has also been examined by other workers (for example, Misra 
and Sudarshan 1977, Davies 1976). 

Here we shall look at the problem from a different point of view, and so avoid the 
‘watched pot’ difficulties. We shall consider a particle emitted by a source S,  whose 
right-hand end has coordinate x = s, and which then travels along the line Ox.  It will 
be assumed that S is well to the left of the origin 0, so that at any time t when the 
particle is in the neighbourhood of 0 it is moving freely. The region x 3 a, where 
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x = a > 0 is the coordinate of a point A to the right of 0, may be ‘instanteously swept’ 
at any time. The problem then becomes: ‘Is there a time tl before which the probability 
of the particle being found in the region x 2 a is insignificant? Is there a second time 
f 2  after which the probability of the particle being found in the region x 3 a is not 
significantly different from unity?’ By the nature of the questions, if there is an answer 
to either then it is certainly not unique; for example if t l  exists and ti < tl then t l  is 
also such a time. 

Let P [ x  2 a1 t ]  be the probability that the particle is to the right of A at time t. 
Whether this is ‘insignificant’, ‘significant’, or ‘insignificantly different from unity’ is a 
subjective judgement by a human being. Such a judgement, described by statisticians 
as a ‘confidence limit’, takes the form: 

‘If P [ x  5 a /  t ]  < E the probability that the particle is to the right of A is insignificant. 
If P [ x  3 a1 t ] >  1 - E  the probability that the particle is to the left of A is insignificant.’ 
For example, E = 0.1 represents a 10% confidence limit. Given E it then may be 
possible to determine t ,  and t2 such that 

t < t,+p[x L a1 t ]  < E 

t > t2*p[x 3 a1 t ]  > 1 - E.  

Then tl  can be regarded as the arrival time, t2 the departure time, and fZ- t1 the transit 
time, of the position probability distribution at the point A. 

A comment here on the subjectivity, or otherwise, of the above concepts may be 
in order. An estimate of P [ x  2 a1 t ]  is subjective in the sense that is is made by the 
experimentalist. However, the estimate is forced upon him by the objective conditions 
of the experiment. If he wishes to improve his estimate he must improve his apparatus, 
which entails altering the objectively existing conditions of the experiment. Even the 
estimate itself may not depend on a conscious observer-it could be calculated by a 
computer attached to the apparatus and displayed on a visual display unit. The choice 
of E is, on the other hand, the result of a human decision. Given this choice, however, 
the consequences follow in a logical and objective way. 

The above definitions of tl and f 2  are equally valid whether the particle obeys the 
laws of quantum mechanics or classical mechanics. In classical mechanics we have a 
probability measure p ( x ,  v )  on phase space; in quantum mechanics a probability 
measure on the lattice of subspaces of a Hilbert space. In either case the probabilitiy 
measures evolve freely in the asymptotic limit t += +cc (Simon and Reed 1979), when 
the effect of the source therefore vanishes. 

In § 2 we shall show that given a confidence limit E ,  and the means and standard 
deviations of position and velocity at time t = 0, there exists at any time t an interval 
9, to which the particle is confined to within this confidence limit. This is used in 0 3 
to define arrival time, departure time and transit time, and determine conditions for 
their existence. The Mandelstam-Tamm inequality is used in § 4 to show that the 
transit time, when it exists, satisfies a time-energy uncertainty principle. 

2. The interval 

Let q ( x )  be the probability density at t = 0 for a particle moving freely along the x 
axis. In the case of a classical particle q ( x )  = j p ( x ,  U )  du. In the case of a quantum 
particle with wavefunction cp, q ( x )  = Ip(x)I2: if the particle is in a mixed state q will be 
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a convex linear combination of such terms. The mean position is (x) = q ( x )  dx and 
the standard deviation Ax is given by 

(AX)’ = ( x - ( x ) ) ~ ~ ( x )  dx. I 
Let 1 be any positive number. Then (2.1) can be written 

( X ) + l  

( x ) - l  
  AX)^ = I (x -(x))2q(x) dx + r 

where 

In the integrand on the right-hand side of (2.3), (x-(x))’2 1 2 .  Hence 

r 3 I’P( x $4) (2.4) 
where 

P ( x B 4 ) ~ ( ~ ( ~ ’ - l + I + ~ ) q ( x )  -m ( X ) + l  dx 

is the probability that the particle lies outside the interval 4 = [(x)- 1, (x)+ 11. The 
first term on the right-hand side of (2.2) is non-negative and so using (2.4) 

(Ax/ 2 P( x B4). (2.5) 
Thus if ,  for example, 1 = 1OAx we have a 1% confidence limit that the particle is 
confined to the interval 4. 

It can be shown (Farina 1977, 1982) that, for free motion, whether the particle is 
classical or quantum, the standard deviation Ax, of position at time t is given by 

  AX^)^ =   AX)^ + 2 cov( x ,  U ) ? +  (Av)’t’ (2.6) 

where A V  is the standard deviation of velocity, and cov(x, U )  is the covariance of 
position and velocity, at time t = 0. For a classical particle this latter is (( x - (x))( U - ( U ) ) )  
where ( f )  = j j f (x ,  v)p(x, U )  dx dv is the expectation value of a random variable f on 
phase space at time t=0 .  For a quantum particle the appropriate definition is 
cov(x, U )  = ((x-(x)) 0 ( U  -(U))), the symmetrised product A 0 B of two operators A 
and B being defined as $(AB + BA), while (0) is the expectation value of an observable 
0 at t = 0 .  

At time t the particle will be confined, within the same confidence limits, to an 
interval 4, = [(x,)- l,, (x,)+ 1,], where (x,) is the expectation value of position at time 
t, if 1, is positive number defined by 

(Ax/l)’= (Ax,/11)2. (2.7) 
( l l bx )  is a dilation factor whose size depends on our confidence limits. If we denote 
it by f and use (2.6) we can rewrite (2.7) as 

I: =f2[(Ax)’+2 COV(X, v)? + ( A u ) ~ ~ ~ ] .  (2.8) 
At time t (2.5) shows that P ( x d 4 , )  S (Ax,/1,)’ =   AX/^)^ = 1/ f 2 ,  so that 100/f2 is the 
percentage confidence limit at all times. Clearly there is no point in choosing f to be 
less than or equal to one, and so we shall assume that f >  1. 
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The argument which leads to the inequality (2.5) is quite general, and applies to 
any random variable. Hence if I’ > 0, 

( A u / ~ ’ ) ~  2 P( ~ d (  U)- l‘,  ( U ) +  1‘3). (2.9) 

If we put I’=fAu in (2.9) we obtain 

1 / f 2  3 P( U d( U )  - ~ A u ,  (U) + f A  U]). (2.10) 

Thus 100/f2 is also the percentage confidence limit that the velocity lies between 
( U ) - f A u  and (u )+fAu.  

3. Arrival and departure times 

It can be shown (Farina 1977, 1982) that, whether the motion is classical or quantum 
mechanical, the covariance of position and velocity at time t, which we denote by 
cov,( x, U), is given by 

cov,(x, u)=cov(x, u)+(Au)’t. (3.1) 

From (3.1) we deduce that position and velocity are uncorrelated at the time t = 
-cov(x, u ) (Au)-~ .  It will be convenient from now on to take this as the origin of time, 
when cov(x, U )  = 0 and (2.6), (2.8) simplify to 

 AX,)^ =  AX)^+ (Au)2 t2  (3.2) 

1:   AX)^ + ( A u ) ~ ~ ~ ]  (3.3) 

respectively. The time t = 0 at which position and momentum are uncorrelated is the 
time when the standard deviation of position, and length of 9,( = 2l,), are minimal. 

Differentiation of (3.3) with respect to t yields 

i, =f’(Au)’t/l, = f ( A u ) 2 t / [ ( A x ) ’  + ( A u ) ~ ~ ~ ] ” ~ .  (3.4) 

It is easy to see from (3.4) that I, increases monotonically with time from - f A u  when 
t - --CO through zero when t = 0 to + f A u  when t - +CO. Since 9, = [(x,)- l,, (x,)+ I,] 
and (x,) = (x)+(u)t, (U)-  i, and ( U )  + i, are the velocities of the left and right-hand ends 
P, Q respectively of 9,. It follows that both of these ends move always in the direction 
of (U)  if I(u)l>fAu. In this case every point of the real line is passed by each end 
precisely once (provided we extrapolate back in time with the source removed). 

The point Q coincides with A when (x,) + I, = a. The point P coincides with A 
when (Xi)- 1, = a. These are equivalent to (x,) - a = *1,, which in turn is equivalent to 
the equation ((x,)-u)’= I : ;  that is, to ( (x)+(u) t -a )2= 1:. (3.3) shows that this last 
equation is equivalent to 

(3.5) 
where d = (x) - a. 

Equation (3.5) is a quadratic equation for the time t. Its real roots (if any) are the 
times when P or Q coincides with A. If it has no real roots neither P nor Q ever 
pass A. (For example, if ( U )  = (x) = U = 0 when 9, is the interval [--L,, +Cl which always 
contains A.)  The quantity d is the distance of the centre of the position distribution 
from A when t = 0. 

[( u ) ~  - f 2 (  A v)’]t2 - 2 d (  u)t  + d 2  - f2(  AX)* = 0 



Arrival time in OM 1477 

Equation (3.5) yields two solutions tl and t2 for t. They are given by 

t,,z = d(  U)/[( ~ ) ~ - f ’ ( A u ) ’ ]  *;At (3.6) 

where 

If I(v)l> f A v  the roots are real and distinct, as independently established above. The 
choice of the negative sign in (3.6) for t l  and the positive sign for t2, then ensures that 
tl < t2. 

In the case I(u)i > f A u ,  therefore, tl and t2 are the arrival and departure times of 
4, at A. The transit time is the time taken for 9, to cross A, and so equals t2- t l  = A t  
by (3.6).  When I( v)l + f h v  + (3.7) shows that the transit time At  + +a. 

increases monotonically from - fAu when 
t - -a to + f A u  when t - +CO, the velocity (U) + i, of Q is initially negative, but increases 
monotonically and becomes positive for some value of t. Similarly the velocity (U) - I ,  
of P is initially positive, but decreases monotonically with t and becomes negative for 
some value of t. It follows that when t + *E 9, expands to fill the whole real line, and 
so no point can be completely traversed. The concepts of arrival time, departure time, 
and transit time in the sense we are using them collapse in this case. 

An example in classical mechanics is a crowd of runners as in a marathon. From 
(2.10), if I ( v ) / >  f A u  all but an insignificant number of runners (at most) are going in 
the direction of ( u )  # 0, and virtually the whole crowd must cross every point completely. 
If I(v)i < f A u  a significant number of runners are moving to the left, and a significant 
number of runners are moving to the right, so the crowd never completely crosses any 
point. 

Suppose now that I(u)i < f A u .  Since 

4. Lower bound on the transit time 

The discussion in 5 3 is equally valid whether the motion is governed by classical 
mechanics or quantum mechanics, What feature, then, distinguishes classical motion 
from quantum motion? We describe such a feature in this section. It illustrates the 
so-called time-energy uncertainty principle AE * A t  2 h ,  but in a precise form for this 
particular case. 

The transit time A t  is given by (3.7).  Classically there is no limit, in principle, to 
the precision with which the velocity and position can simultaneously be known. Hence 
in (3.7) A V  and Ax can be arbitrarily small, and there is no positive lower bound on At. 

Now consider the quantum case. For A t  to be defined we require / (u ) l> fAu.  In 
this case (3.7) shows that 

A t  2 2fAx/l(v)l. (4.1) 
The Mandelstam-Tamm inequality (Mandelstam and Tamm 1945, see also McWeeny 
1972, Bhattacharyya 1983) states that, for any observable A which does not depend 
explicitly on the time, if the Hamiltonian also does not explicitly depend on the time 
then 

AA,/ld(A,)/dtl2 h/2AE; (4.2) 
in (4.2) AA, is the standard deviation of A at time t, and AE is the (constant) standard 
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deviation in energy (assuming all of these quantities exist, of course). If we put A = x 
in (4.2) and remember that ( x , ) = ( x ) + ( u ) t  we obtain 

Ax,/l(u)l 2 h / 2 A E .  (4.3) 

The inequality (4.3) is true for all times, and in particular if t = 0 when Ax, = Ax. 
Hence from (4.1) 

A t 2  f h / A E .  (4.4) 

At > h / A E .  (4.5) 

Since f >  1 we deduce from (4.4) that 

The inequality (4.5) yields a lower bound on the transit time. In fact since f >> 1 
for good confidence limits we actually have At  >> h / A E .  The positive lower bound on 
Af provided is essentially quantum mechanical. It is a particular form of the time-energy 
uncertainty principle. 

5. Conclusion 

We have examined the case of a particle moving freely along the x axis when our 
information is limited to the means and standard deviations of position and velocity. 
We have shown that, whether the particle is governed by classical mechanics or quantum 
mechanics, there is an interval 9, to which the particle is confined to within any 
pre-assigned percentage confidence limit 100/ f '. If I( U)[ > f A u  both ends of 9, travel 
in the same direction, and there is a well defined arrival time t1 and departure time 
f 2  for 9t at any point, and hence a well defined transit time At  = tZ- t l ;  but if I( u)l s f Au, 
t ,  and f2  are undefined. The feature which distinguishes the quantum case from the 
classical case is the inequality (4.5), which is a particular form of the time-energy 
uncertainty principle. 
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